Learning Multiview Embeddings of Twitter Users

نویسندگان

  • Adrian Benton
  • Raman Arora
  • Mark Dredze
چکیده

Low-dimensional vector representations are widely used as stand-ins for the text of words, sentences, and entire documents. These embeddings are used to identify similar words or make predictions about documents. In this work, we consider embeddings for social media users and demonstrate that these can be used to identify users who behave similarly or to predict attributes of users. In order to capture information from all aspects of a user’s online life, we take a multiview approach, applying a weighted variant of Generalized Canonical Correlation Analysis (GCCA) to a collection of over 100,000 Twitter users. We demonstrate the utility of these multiview embeddings on three downstream tasks: user engagement, friend selection, and demographic attribute prediction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiview Deep Learning for Predicting Twitter Users' Location

The problem of predicting the location of users on large social networks like Twitter has emerged from real-life applications such as social unrest detection and online marketing. Twitter user geolocation is a difficult and active research topic with a vast literature. Most of the proposed methods follow either a content-based or a network-based approach. The former exploits user-generated cont...

متن کامل

Word Embeddings to Enhance Twitter Gang Member Profile Identification

Gang affiliates have joined the masses who use social media to share thoughts and actions publicly. Interestingly, they use this public medium to express recent illegal actions, to intimidate others, and to share outrageous images and statements. Agencies able to unearth these profiles may thus be able to anticipate, stop, or hasten the investigation of gang-related crimes. This paper investiga...

متن کامل

Detecting hot topics from Twitter: A multiview approach

Twitter is widely used all over the world, and a huge number of hot topics are generated by Twitter users in real time. These topics are able to reflect almost every aspect of people’s daily lives. Therefore, the detection of topics in Twitter can be used in many real applications, such as monitoring public opinion, hot product recommendation and incidence detection. However, the performance of...

متن کامل

Quantifying Mental Health from Social Media with Neural User Embeddings

Mental illnesses adversely affect a significant proportion of the population worldwide. However, the methods traditionally used for estimating and characterizing the prevalence of mental health conditions are time-consuming and expensive. Consequently, best-available estimates concerning the prevalence of mental health conditions are often years out of date. Automated approaches to supplement t...

متن کامل

Improving Twitter Sentiment Classification Using Topic-Enriched Multi-Prototype Word Embeddings

It has been shown that learning distributed word representations is highly useful for Twitter sentiment classification. Most existing models rely on a single distributed representation for each word. This is problematic for sentiment classification because words are often polysemous and each word can contain different sentiment polarities under different topics. We address this issue by learnin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016